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Abstract

The objective of this paper is an analytical and numerical study of the dynamics and dynamic instability
of a slider-crank mechanism with an inextensible elastic coupler. Special attention is given to the phenomena
arising due to modal interactions produced by the existence of multi-component, specifically two-component,
parametric resonance. Such modal couplings are very common in the bending-bending motions of fixed/
rotating beams. The two-component parametric resonance occurs when one of the natural frequencies of
flexible parts of the mechanism is one-half or twice of the excitation frequency and simultaneously the sums
or the differences among the internal frequencies are the same, or neighboring, as the frequency of excitation.
The effects of two-component parametric resonance post on instability condition are also investigated.
Resonance generated by more than two component modes are neglected due to its remote probability of
occurrence in nature. The mechanics of the problem is Newtonian. Methods of analysis will consist of the
dynamics of small deformations superimposed on the undeformed state. Without loss of generality and
based on the Euler—Bernoulli beam theory, the coupled nonlinear equations of motion of a slider-crank
mechanism with an inextensible flexible linkage are derived. The Newton’s second law is used to obtain the
boundary constraints at the piston end. Galerkin’s procedure was used to remove the dependence of spatial
coordinates in the partial differential equations. The method of multiple time scales is applied to consider
the steady state solutions and the occurrence of dynamic instability of the resulting multidegree-of-freedom
dynamical system with time-periodic coefficients. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

A great deal of work has been done on the problem of parametric excitations of mechanisms
with flexible components. Typically due to the effect of inertia, these elastic links are subject to
axial and transverse forces. The mathematical model of the problem then reduces to a system of
coupled dynamic equations with time-periodic coefficients.
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Badlani and Kleinhenz (1979) discussed the dynamic stability of a slider-crank mechanism with
an elastic connecting rod under the assumptions of Euler—Bernoulli and Timoshenko beam theories
respectively. They pointed out that new regions of instability exist when the effect of rotary inertia
and shear deformation are taken into account. Badlani and Midha (1982) analyzed the same
manner except that the effect of initial curvature of the flexible link is involved. They developed a
simple model that neglects the higher modes of vibrations and the interactions among amplitudes.
Their results show that even a very small initial curvature of the coupler exists, the transient and
steady-state solutions are amplified significantly.

Zhu and Chen (1983), and Jasinski et al. (1970) considered the problem of dynamic stability of
a slider-crank mechanism with an elastic connecting rod. They assumed that the ratio of crank
radius to the coupler is a small quantity. In the former paper, the authors applied perturbation
method to the resulting equations of motion and obtained the Mathieu-type equations. Regions
of dynamic instability then are determined on the basis of Mathieu equations. In the second paper,
they employed the averaging method of Krylor and Bogoliubov to the equations of motion.
The dynamic stability and steady state solutions are obtained from the resulting autonomous
system.

Tadjbakhsh and Younis (1986) employed the Floquet theory to analyze the dynamic stability
of a slider-crank mechanism with multi-links under the assumption of small deformations in
the displacement field. They pointed out that the small deformation motion of each link
is not influenced by the flexibility of other links. The individual stability criteria can be used to
evaluate the overall dynamic stability of a flexible mechanism with multiple connecting
rods.

Halbig and Beale (1995) carried out an experimental model to observe the dynamic responses
of a flexible slider-crank mechanism at very high speed. They performed their experiments over a
wide range of speeds as well as the crank length. They observed the occurrence of parametric
resonance and determined regions of periodic doubling and amplified response.

Hsieh and Shaw (1994) analyzed the dynamic response and correspondingly the stability of a
slider-crank by the method of multiple time scales. They discussed the phenomena produced by
the occurrence of primary, superharmonic and subharmonic resonances. However, only single
resonant mode was considered in their modeling.

It is known that the multi-component parametric resonance that exists depends not only on the
parametric excitations but also on the commensurable relations of frequencies and the degrees of
freedom of the system (Nayfeh and Mook, 1979). For a n degree-of-freedom coupled system with
time-periodic coefficients, the existence of parametric resonance can have one or more components
when one or more internal (natural) frequencies of the system and the excitation frequency are
commensurable or nearly commensurable. The two-component parametric resonance then exists
when one of the natural frequencies of flexible parts of the system is one-half or twice of the
excitation frequency and simultaneously the sums or the differences of natural frequencies of the
system are commensurable with the frequency of parametric excitation.

Results of present study indicate that the occurrence of two-component parametric resonance
amplifies the region of instability and the possibility of existence of unstable motions. This is due
to the modal interactions among modes and was not found in the analysis given by other authors
(e.g. Badlani and Kleinhenz (1979), Hsich and Shaw (1994)).
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Fig. 1. System configuration.

2. Basic formulas

We consider a slider-crank mechanism with an inextensible initially straight elastic coupler as
shown in Fig. 1. The mechanism consists of the rigid crank of radius r; the elastic link of length /;
a distributed mass, m, per unit length; and the frictionless piston of mass M.

In Fig. 1, the i and j represent the unit vectors of the Cartesian frame in the plane of the
mechanism; e; and e; represent the unit vectors of the moving coordinate (x,y,z coordinates)
system whose x (e;) coordinate is along the centroidal line of the straight elastic link; e, is the unit
vector along the crank. The position vector of point s along the link at time ¢ is represented by
R(s, #) and is given as

R(s, 1) = re,+r = re, 4+ (x(s) +u(s, 1))e; +v(s, t)e; (1)

where u(s, ) and v(s, ¢) are the axial and the transverse displacements of the rod from the dynamic
undeformed state, respectively, and

e, = cos(f—¢)e;+sin(f—¢p)e; = cos fi+sin fj
e; = CoS ¢i+sin Pj
e, = —sin ¢i+cos @j

where f is the angular displacement of the crank. The acceleration of points along the coupler in
the moving coordinate system, R, then is obtained from

d2
Ru=p [R(s, )] = [—rB . sin(B—§) —rp cos(B— ) +u, — (x+u)¢]

- 2U,t¢,t - U¢,zt]ei + [rﬁ,ft COS(ﬂ - d)) - rﬁzr Sin(ﬁ - d)) + U + (X+ u)¢,zr
+2u,¢,—voile, = ae;+aye, )
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Fig. 2. Force equilibrium diagram.

where the subscript 7 denotes the time differentiation and

r

sin(B—¢) ~ sin f+ ;/sin 2[3—;(;)2 sin’p
ro. 1/r\? .
cos(f—¢) ~ cos f— Zsmzﬁ— ) </> cos fsin’ .

The angle ¢ and its time derivatives in the above equation can be eliminated from the following
kinematic relationships (Viscomi et al. 1971):

. ro.
sin ¢ = —Lsmﬁ

¢,t = - %ﬁr COSﬂ

b= Businp— B, cosp 3

L

The equations governing the motion of the system in the moving coordinate frame (x,y,z
coordinates) can be derived from the dynamic equilibrium of forces and conservation of momenta.
From Figs 1 and 2, one obtains

F,=mR,, 0<s</, t>0 C)
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M,+V =0, (5)
with the inextensibility constraint

r,r,=1, (6)
where the subscript s denotes the s differentiation. The force F is given by

F = He;+ Pe; = (T'cos 0+ Vsin0)e;+ (T'sin0— Vcos O)e; N

where T is the axial force in the coupler; V' is the transverse force in the coupler; £ and [ are the
Young’s modulus and the area moment of inertia of the coupler respectively; and M = —Elv .
The unit tangent and normal vectors, t and n, to the coupler configuration are given by
t=(14u,)i+vj=cosli+sinljand n = —v i+ (1+u,)j= —sin0i+cos0j.

Substitution of eqns (2), (3), (5), and (7) into eqn (4), the equations of motion in directions e;
and e; yield

[TA4+u)+Ev o], =ma, 0<s</, t>0, ®)
[TD,S_EIU,S,Y,Y(I +us)]s = ma 0 <s< f, t> 0 (9)

s
where a, and a, are defined by eqn (2). Therefore, eqn (9) represents the motion of the linkage in
the e; direction and eqn (8) determines the axial force 7°(s, ) of the coupler.

As shown in Fig. 1, two types of boundary conditions are stated. The first is that the coupler is
assumed to be hinged at each end. Therefore, the longitudinal displacement vanishes at s = 0. The
moment and transverse displacement vanish at s = 0,/. The second is when Newton’s second law
is employed to provide a force balance between the axial and shear forces of the rod and the inertia
force of the frictionless piston (e.g. Badlani and Kleinhenz, 1979). The boundary conditions then
are:

0*v(0,1)  *u(l,t)

u(0,1) = v(0,1) = v(/,t) = PR 0 (10)

(H+Ma,)cosp—(P+Ma,)sinp =0 at s=/7/ (11)
From eqn (11), one obtains

1(/,v)  —Ma,—Elv v, +tan ¢(—Elv ,+Ma,) at s=/7 (12)

To determine the axial force 7(s, 7), we integrate eqn (8) and use the boundary constraint, eqn
(12). After some manipulations, the result yields

T(s, £) x (1 +u) + Elv v, = J ma, ds+ C(1) (13)

0

where C(¢) is constant of integration and is given by

/
C(l) = T(/7 l) X (1 + u,s) |S:/’ +EIU.A"\1\‘U,X|A‘:( _J‘ max dS

0

This result can be inserted into eqn (9).
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The equations of motion of the slider-crank mechanism with constant angular velocity, @ = con-
stant, in dimensionless form can be obtained by introducing the following dimensionless quantities:

Car a2t g2l gl 4ot
T = wl, u—/, U—/, = 17—/,
[ P 1= (14)
" omtter” M Mo T ml
Substitution of eqn (14) into eqn (9), one gets
64 0T (n, t) 00 0%%
b..+1,— —E*(cos’t)i— —T(n,t)— —2&cos i,
A G U e rh (L e i
+&sinti = Esint(l—n)+5E sin2t—5 & sin’t - (15)
where
oT(n, : : .
((971 v = —¢cost+2Ecostd, —Esintd+ E*[sin’t— (cos’T)n] + 553 cos T sin’t
and
. 1 1
T(n,7) = —icosr(n—1)+M€cosr—2£cosrj U, d11+ésinrj vdy
n n
+L,Esintd”|,_, +EXsint(n—1) + ME? cos 2t
1 3 : 1 3 2% .
—2& cos’t(n? — 1) +; & costsin’t(n—1) —3 &3 M cos tsin’t +; E* M cos T sin 2t
Examination of the dynamics governed by eqn (15) is the main aim in this study.
We begin by representing i and ¢ as continuous functions. Let
ZA(r)smmn, 0<n<l1, >0, (16a)
) 1 0 o
i, 1) = — 5 Y. 2 Ai(®)A(D) Ry () (16b)
i=1k=1
where

n
Ry (n) = (in)(km) J cos imn cos knny dn
0

Thus, the boundary condition, eqn (10), and the constraint relation, eqn (6), are satisfied. Now,
eqns (16a) and (16b) are substituted into the normal equation of motion, eqn (15), which yields

i A+ ((im)2], — & cos*t) A sin iy
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28c0st Y Y [(AD) A (®) + A(0) Ax (0] R (1)

i=1k=1

Lesing Y Y A AR — D 5

(im)A;cos it
i=1k=1 an Z {

+T(n,7) Y. (in)*A;sininn
i=1

= 2¢sint(l1—n)+ & sin2t1— & sin’t

d
=4 (17)

where 07(n,t)/0n and T(y, 1) in eqn (17) are given in the Appendix. It is mentioned here that in
eqn (17) the terms higher than #* are neglected by the assumption that # is a small quantity.

The approximate solution of the slider-crank mechanism is to be obtained by employing the
Galerkin’s method. Using Galerkin’s procedure for minimizing error, we multiply eqn (17) by
sin jr n and integrate eqn (17) with respect to # from 0 to 1, thus obtaining

>0, j=123,....(7)

o0

A;(7) + (0} — E* cos?1) 4,(t) —2E cos Z i A1) A (2) + A4;(1) A (D] Ry ()
+¢sint i i Ai(r)Ak(r)Iéi,(_,(n) -2 i (im) [— ¢ cos oy A,(t)

+2&costA; (1) Z o5 A (1) — EsintA,(1) Z ot A (r)}

—2{ —fcosr(]n) (M+1)4;(t)+Ecost Z(zn)zoc”“A-(r)

+ (chosr— (_ Y
(k )2 ]
+ (2 cost—¢sinT) Z z o5 A1) A, (7)

(]n) I,¢sin TA;(7) <i (— 1)1‘(1’77:)314,-(7:))}

—ésm

”MS

i R A0 Ap(0) 42805t 3 Y Ru(Ai() Ax (1) + A4,(2) A (1))

i=1k=1

]—fsmr—l— 2 [1—(—1)]&*(sin2t—¢sin’t),t >0, j=1,2,3,...,( ):(;11 (18)
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where

1

CO} = (]'7'1:)4[’;,7 and Rikj(n) = J Rik(”l) Sil’ljﬂl’] d”'

0
The results of the integration of the cosine and sine functions in the above equation «;; and o;*
are given in the Appendix.
To analyze the system governed by eqn (18), we allow the response of the system to be small
but finite. Thus, the method of multiple time scales can be used to predict the responses of the

system. According to this method, we assume that the amplitude, 4,(t), has the expansion (Nayfeh,
1979)

Aj(tse) = ed (9,71, Ta, . -)"‘82/‘12;‘(70,7«'1’1’2: . -)+33A3_/(T0,71,'52, N

t,=¢7, n=0,1,2,...

4 e e oDy teD, 42D, +

dt ot 86'51 8812 = Pomei et

d2

FED(%Jrzgl)oDl+32(D%+2D0D2)+--- (19)
T

where ¢ is a measure of the amplitude of the response and is small compared to unity.

For the purpose of studying the parametric resonance of the non-autonomous differential
equations, we substitute (19) into the equation of motion, (18), and set ¢ = ¢&. After manipulating
these equations, we equate coeflicients of equal power of ¢ and obtain to order one and two:

2,
¢'s DiA,+wid, :],—nc‘fsinro (20)
e D}dy,+wldy,; = —2DyDA,;—Ecost,(jm)>(M+1)A,;

—2&cos, Zl (im)asA,;+2E cos 1, Z} (im)*ol A,

+ 3[1—(—1)/‘]52 sin 27, (1)
JT

It is shown in eqn (20) that unbounded oscillation occurs when the frequency w; is near 1.
Therefore, in the following, the conditions considered are related to the cases when the natural
frequency w; is away from 1.

From eqn (20), it is seen that the amplitude, A4,; is harmonic in 7,, and its solution can be
represented as

A, = a;cos(w;to+¢;)+ sint, = a;cos ﬁj+fA_, sin t, (22)

(jm) (o7 —1)

where a; = a1, 1,,...) is the amplitude of response; ¢, = ¢;(11,7»,...) is the phase angle and
A; = 2/(jm) (@] = 1).
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To seek the solution of 4,;defined by (21), we substitute (22) into (21). After some manipulations,
we obtain:

DAy +w; Ay = 2w,[(D,a)) sin f;+a,(D,¢;) cos f)]

—2E(jm)> (M + 1)a,( cos B +cos Bi;) — & i [(im)ess — (im) o) a,( cos B7; +cos fi;)

_& {;jn)z(MJr DA, + i [(im)es — (im) el ]A, —Ji [1—(— 1)/‘]} sin 21, (23)

where f; = (0,4 1)10+ ¢; and f7; = (w;— )10+ ¢,

Nayfeh and Mook (1979) pointed out that a multidegree-of-freedom dynamic system with
parametric excitation will experience multi-components parametric resonance when two or more
internal frequencies and the excitation frequency are commensurable or nearly commensurable.
For a dynamic system with finite degrees of freedom similar to that defined by (23), parametric
resonance may exist when w,, & %Q, w,— o, & Q(n > m), and w,+w,, & Q. Here w,, is the dimen-
sionless internal frequency of the mth mode of vibration and Q is the frequency of excitation.

For the purpose of studying the effects of multi-component parametric resonance to the motion
of the slider-crank mechanism, we selected the following two sets of frequencies so that the two-
component parametric resonance defined by eqn (23) exist. These are: (1) w,, & %and w,—w,, ~ 1,
n>m,and 2) w, ~2and w,—w,, ~ 1, n > m.

2.1. Case 1

1
For the case of two-component resonance when w,, & ; and w,—w,, & 1, n > m.
. 1 .
In order to express the commensurable relations of w,, to ; and w,—w,, to 1, the detuning
parameters a,, and ¢, are introduced:
1
5 = W, +0, (24)
1 =w,—w,+e¢o0,. (25)

where w, = (n/m)’w,,.
The relationship between ¢,, and ¢, can be determined from eqns (24) and (25) which yield

2
€0, = |:3 - <}:l/l> j| W, + 286);1 = K?mwm + 280—)11 (26)

For the differences of the arguments of the cosine and sine functions of unequal arguments we
have

ﬁl_m = (wm - I)TO + ¢m = - (meO + d)m) - 2(0-1711-1 - d)m) = — (ﬁm +25m) (27)
= (wm + I)TO + ¢m = ((1),,'[0 + ¢I1) + (O-nTI + ¢m - ¢n) = ﬁn _5mn (28)

and similarly

ﬁl_n = (wn - I)TO + d)n = (wmr() + d)m) - (O-n’cl + ¢m - d)n) = ﬁm — 5mn (29)
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where  0,,=o,ir—¢,, and 6,,= o, +¢,—¢, Therefore 6, =0,,(t,7,...) and
Ouwm = Oum(T1, T2, . .. ) are two new phase angles. From the definition of ¢,, and ¢, we have

D¢, =0,—D,0o, (30)
and

D¢, =0,+D$,,—D6,, (31)

Returning to (23) the solvability conditions are the vanishing of the secular terms. These number
four, two from each component equation. These are respectively:

20, D\, + EL(mn)* (M +1) +f,)a,, 5in 26, — &f,,,a,, sin 5, = 0 (32)
20,4, D1 b, — EL(mm)> (M + 1)+ £,,,,]a,, cos 28, — &f,,,a, €08 3, = 0 (33)
20,D,a,+ Efpma,, sin d,,, = 0 (34)
2w,a,D, ¢, — éf,,,,,am €080, =0 (35)

where f,,, = [(nm) a5, — (n)*o].

The main purpose of eqns (32)—(35) is to determine the response of motion in steady state and
the regions of unstable motion.

To study the local stability of the fixed point and the steady state solutions, we represent the
first order problem in the form

Ay = Hi(t,,15,...) explio;te) + Hi(t,, 15, . .. ) exp(—im;T,)
— i1 EA(exp(ity) —exp(—ity)), j=1,2,3,... (36)

where i = ./ — 1 and H; is the complex conjugate of H,. The relation between the amplitude a, and
the coefficient H; can be obtained by comparing (22) and (36), whereby one finds

H, = %a‘,exp(fq,’)j), Jj=123,... (37

where g, and ¢, are the amplitude and phase of the jth mode. Therefore, we rewrite eqns (32)—(35)
as

4wm;(Dl Hm) + 2£fmmﬁm exp(zfamfl) - 2£ﬁ1mHn exp( - ;O-nrl ) = O (38)
4a)7'[ i:(Dl Hﬂ) + 2éf;71”H)77 exp(fgnrl ) = 0 (39)

where 7, = %(mn)z(M + 1)+
To determine the stability of two-component parametric resonance we follow the procedure
outlined in Nayfeh and Mook (1979) and let

H, = 3(x,—iz;) exp(i0,1,) = 3(x; —iz;) exp(ie0,7), k = m,n. (40)
Here x, and z, are real and
do,
, = 40 (41)
dr

For the resonant case, we substitute eqn (40) with (41) into the resonant equations defined by eqns
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(38) and (39) and separate the real and imaginary parts. After some manipulations, we obtain a
set of resonant equations in terms of x; and z,. Now, if a small perturbation is superimposed on
x, and z, (k = m, n) then we have

z =z + 2 (42)

Here x7, z{, X, and Z, are the fixed points and the disturbances respectively. The local stability of
a fixed point with respect to a small perturbation for each resonant case hence can be determined
by the eigenvalues A which are given by the zero of the determinant of the perturbation equations.

Following the procedure mentioned above, we first substitute eqn (40) with (41) into eqns (38)
and (39) and then substitute eqn (42) into the new set of equations and separate the real and
imaginary parts. After some manipulations, we get

. ) & .. E

x"l + 07772”1 + 2wmfmmzm + Zwmfnmzn - O (43)

PR TP SR S (44)
m m m 2wm mm m Za)m nm n

PO P (45)
! " 2wnfngAm

f_0s+ e g (46)
n n n zwn mn m

The local stability of a fixed point with respect to a small perturbation can be determined by the
eigenvalues A which are given by the zero of the determinant of the equations of (43) through (46).
This determinant is given by

¢ ¢

A — —

O-m + 2({)"1 fml‘n O 2wmﬁll71
¢ ¢
—0,+ Emf mm A - Tmﬁ"ﬂ 0
: =0 47)

0 - TCU,,ﬁ’m ) d (™ + g,

< £, 0 —(0,,+0,) A

2wn mn m n

where f,,, = ;(mn)*(M+1)+/,,. 0,,= D\¢,, = o,, and 0, = D,$,, = 7,,+0,. Thus, the charac-
teristic equation of (47) has the form

I A+ A4, =0 (48)

where
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r =0
A RPN SR S S
2w, 2w,,0,
ry =0
& e :
ry = [am (0,+0,)+ 40,0, fm,,fnm:| — |:2wm o (O + an):| (49)

The solution of eqn (48) is A* = l[—r2 +./r3—4r,]. Therefore, the transition values corre-
sponding to the roots of eqn (48) with the coefficients defined by (49) are r, = 0 or

/\ A

2

¢
2 f;nm (Gm + Gn) + 4(,0 f;11)1ﬁ1n7 - O (50)

m n

Gm(o-m + O-n) +

Multiplying eqn (50) by &* and substituting eqn (26) with eqns (24) and (25) to eliminate o, in
eqn (50). After some manipulations, the result yields

36 fom £ 5, g2 & B
2wm }( ) 5 6f n T fmnf;zm - (51)

4 (”) o3
m

It is noted here that in the absence of internal resonance, K,,m fom = fum = 0, eqn (51) coincides
with the result of Badlani and Kleinhenz (1979) for w,, = .. ! That is, they reduce to

7 .1
eo, = 4 I _ ;(f [2 (mm)? <M+ 2)} (52)

2a)m m

3 (80-)77 ) 2 { mn wm +

The transition values corresponding to the roots of (51) are

1 385f mm
&0, = 6 |:_ <Kmnwm _l__ 2(,0," )
_ 3géf:11m 85 g 3f:nm ’ 3f;11nf;1m
+ K 1 — 53
N m”wm\/ - Kmnw}n * <Kmnwm> 2('0111 n 2 ( )

(o)

Therefore, the transition curves that separate the stable and unstable motions of the system from
W, = % and w, = (n/m)’w,, in the ew plane then are given by
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1 11 1 £f

1 — 1 2Séf:nm Eé ? ) fmnﬁzm
i P Kmn \/1 + Kmn + 12 (Kmn> 3f21m —4 n ) (543)
)
2 2
w, = <7’,:l> w,, = <I:l/l> {;_é |:_ (% Kmn i 385]:1711)

i %Kmn \/1 1 1288€fmm + 12 < 86 ) <3j’(\51m_4fmnf;zm>j|} (54b)

(s B

mn mn

2.2. Case 2

For the condition of two-component resonance if w,, ~ 2 and w,—w,, ~ 1.
Similar to that done in Case 1, we let

2 = wm + 50,,1 (553)
l1=w,—w,+¢o, (55b)
where a,, and o, are the detuning parameters and

3 n

2 1 . 1
&0, = |:2 - (m> :|wm + Egam = Kmnwm + 586711 (56)

Hence

2‘CO = WpTy +O-mrl
= (meO + ¢m) + (GmTI - ¢m) = ﬁm + 5m (57)

Returning to eqn (23), the solvability conditions for the case when w,, ~ 2 and w,—w,, ~ 1 are

2w,,D,a, —Ef,a, siné,,, = E{[5(mn)>(M+1)+£,,,]A, — A%} cos 4, (58)
20,8, D —Ef ot 08 3,,, = E{[5(mm)* (M + 1) + £, ]A,, — A} sin§,, (59)
2w,D,a,+ Ef,na,, sind,,, = 0 (60)
20,a,D ¢, — Ef,ntt,, €08 9, = 0 (61)

where A% = 2/mmn[1 —(—1)"]. Similar as before, we rewrite eqns (58)—(61) as the form
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4('0)11;D 1 Hm + 2£ﬁuan eXp( - l/:UnT 1 ) = ;52 (j}.’nmAm - A;kn eXp(famT 1 ) (62)
4wnfDlHn+zé.f)‘nnHm exp(fo-nfl) = 0 (63)

To determine the steady state solutions and correspondingly the local stability of the steady
state solutions, we substitute eqn (40) with eqn (41) into eqns (62) and (63) and separate the real
and imaginary parts and obtain

, é 52 7 *

Xm + szm - 2(Dm nmZn = 2(,0,,1 (fmmAm - Am (64)

z —0,x —i—if x,=0 (65)
m m-vm 2(Um nm“vn

x,+0,z —if z, =0 (66)
n nén 20),, mn“m

z—0,z +if X, =0 (67)
n nén 20),7 mn“Vm

To determine the steady state solutions, we return to eqns (64)-(67) and set x,
=z, =x,=z,=0and x} +z; = ai, k = m, n. The result yields
_ 2éz(ﬁnnzAm _A:Jk‘l)wn@n

= 2
4wmwn Qm 0)1 - é mn.J nm

m

— 52 (Gm + Gn) (f;nmAm - An*1 _ 522 (am + O-n) (f;nmAm - A:fz (68)
22 fmnf;zm B 2a)nzA
2a)m Om (am + Un) - é VU
4m,,0,
éfmn éfmn
" 20,0, " 20,00, +0) " ©
where
2
Am NN
(mm)(c,,—1)
and

f;nn.fnm

A= _g _
O-Wl (GI‘H —"_ 671) é 4wma)n

The local stability of a fixed point with respect to a small perturbation then is determined by the
zero of the determinant of eqns (64)—(67). This determinant is obtained by substituting eqn (42)
into the above four equations. Therefore, we have
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¢
A G, 0 - mfnm
¢
O A mf o 0
: =0 (70)

O - Ta)nfmn }“ O-m + O-n
< £, 0 —(0,+0,) A
260” mn m n

where 0,, = ¢,, and 0, = ,,+ ¢,. The characteristic equation of (70) is

472 47, =0 (71)
where
62
fZ = 0-737 + (O-ITI + 0-71)2 + .ﬁ’l'lil.f;?l'l’l
2wmwn

2

Py = |:0m(0m + 611) - 46fmnfnm:|

W, Wy,

Similarly, the solution of eqn (71) is A* = J[—F,+.//—47,]. Hence, the transition values
corresponding to the roots of eqn (71) are 7, = 0 which implies

2

Opm (O-n + Gn) - 4660ﬁnnf;1m =0 (72)

m n

Note that eqn (72) is the same result as A defined by eqn (68). Therefore, unbounded solutions
exist if A = 0. Next, we multiply eqn (72) by &* and substitute eqn (56) with eqns (55a) and (55b)
into eqn (72) to eliminate ¢o,, and obtain

3 , . &2 éz
E(Sam) + Kmnwm (80-/11) - mfmrlﬁzm =0 (73)

Thus, the detuning parameter ¢a,, corresponding to the roots of (73) are

1 > > 382 52 m fnm
80—"1 =5 — I<mna)m i Kmn wm 1 + A~ - 74
3 [ 2K, 0, 7

The curves that unbounded motions of the system occur from w,, = 2 and w, = (n/m)’*w,, in the
o plane then are given by
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2 > > 3 2 A2 mnJ nm
a)m=2—£am=2—[—Km,,iKm,,\/IJFW} (75)

3 n\*
1 () &,
m

— <n>2 {2 _ % [_KTNZ iK‘)’lﬂ \/1 —"_ m}} (76)
m 3 3 <n>2 :

3. Numerical results and discussions

Without loss of generality and considering the commensurable relations among frequencies and
the probability of occurrence in nature we selected the following sets of commensurable relations
of vibrating modes to determine the basic characteristics of the occurrence of two-component
parametric resonance. For the case of w,, = %and w,—w,, = 1 wechose m = 1 and n = 2 to present
the occurrence of two-component parametric resonance. For the condition that w,, = 2 and
w,—w,, = 1 we selected m = 3 and n = 4. It is recalled that the parameter ¢ is the crank ratio; w,

is the dimensionless natural frequency and is defined by

ET

ml*o?

w; =(j )’

where & is the constant angular velocity of the crank.
In addition to the stability analysis, the existence of perturbation solutions is verified by numeri-
cally integrating the modulation equations by the Runge-Kutta method with sixth order accuracy.

In the following figures, Figs 3—7 are related to the case when w, =~ "and w, = 4w,. The solid

and chain-dot lines in these figures denote respectively the first and seczond modes of vibrations.
The dash lines represent the first vibrating mode under the condition of one-component parametric
resonance, @, = % As mentioned previously, the validity of the model is verified by numerically
integrating the modulation equations, eqns (32)—(35).

Figure 3 presents the transition curves that separate the regions of bounded (stable) and
unbounded (unstable) motions emanating from w, = % and w, = 4w, in the {w parameter plane
for M = 0.5, where the shaded area denotes the region of unstable motion for the first vibrating
mode. [tisinteresting that in this case, unbounded solutions almost always exist when the frequency
of first mode is smaller than one-half of the excitation frequency, except a tiny region of small
crank ratio. The occurrence of this new region of instability is, perhaps, due to the variation of
energy between modes. The existence of bounded and unbounded solutions is evident in Figs 4-8.

Figure 4 shows the long-time behavior of the amplitude a, for M = 0.5 and @, = 0.3 with two

different values of crank ratio, ¢ = 0.02 and ¢ = 0.025. The lower plot in Fig. 4 is related to the
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Fig. 3. Transition curves emanating from w, = 1/2 and w, = 4w, in the o plane for M = 0.5.

case when & = 0.02 is encountered. The result clearly indicates the existence of bounded (¢ = 0.02)
and unbounded (¢ = 0.025) solutions. Figure 5 illustrates similar information to that shown in
Fig. 4, except that in Fig. 5, w, is set to be 0.08 with £ = 0.015 (lower plot) and ¢ = 0.08 (upper
plot). The result evidently shows in the case of two-component parametric resonance unstable
motion may occur even the fundamental frequency is far less than the excitation frequency. This
event was not found in the condition of one-component parametric resonance.

Figure 6 illustrates the time history of the amplitude a, for M = 0.5 and w, = 0.75. In the lower
plot & is set to be 0.05. In the top plot £ is chosen to be 0.08. It evidences that the transition curves
separate the bounded (£ = 0.05) and unbounded (¢ = 0.08) motions of the system.

The transition curves emerging from w, = %and > = 4w, in the £ parameter plane for M = 1.0
is shown in Fig. 7. Figure 7 and Fig. 1 illustrate that it is generally true that the piston mass ratio
M and the crank ratio ¢ enlarge the regions of instability. In addition, the lower bound of the
transition values of frequency diminishes as the piston mass ratio increases. In other words, under
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Fig. 4. Time history of the amplitude a, for w, = 0.3, M = 0.5 and ¢ = 0.02 (bottom plot) and & = 0.025 (top plot).

certain conditions, the motion of the system may become fully unstable when the fundamental
frequency is lower than one-half of the excitation frequency.

In the following, the numerical study of solutions for the case when w; =~ 2 and w, = 4w, is
carried out to determine some of the characteristics of response in steady state.

From eqn (69), we find that unbounded solutions exist if A = 0. Hence, boundaries of the
unstable solutions, as functions of the detuning parameter ¢o,,, m = 3, must be determined. We

recall

_ 52 (O-m + O-n) (f:nmAm - A;)k’l) — 52 (am + an)(f:nmAm - A:‘:l) (68)
" z mnJ nm B 2 mA
2(,(),,1 |:6m (Gm + Gn) - 52 f J :| ¢
4,0,

Therefore, unbounded solution exists if A = 0 which implies

3 , R 52\)’22
3 (¢0,,)" + K, 0,,(¢0,,) — mﬁnnﬁtm =0



Y.-M. Wang | International Journal of Solids and Structures 36 (1999) 4225—4250 4243

20.0
|

Amplitude
10.0
l

00

‘ I ! I ' |
00 40 8.0 120
Dimensionless Time

200
J

Ampltude
10.0

0.0

T I T [ T I T [
0.0 20.0 40.0 60.0 80.0
Dimensionless Time

Fig. 5. Time history of the amplitude a, for w, = 0.08, M = 0.5 and & = 0.015 (lower plot) and ¢ = 0.08 (upper plot).

or

n

2 <> Wy,
m

V ﬁmLfnm

where |f,../..| > 0. Note that in the above equation ¢ is the crank ratio and has to be no less than
zero which implies

(80-177) [%(ng) + Kmnwm] > O (78)

g = Sé = \/;(80-}11)2 + Ieﬂli’lwl’” (So-m) (77)

The result of eqn (78) yields the following two sets of solutions:
(1) 80—”1 2 0 and 80—”1 2 _§I€mnwm'
(2) &0, < 0 and &0, < _§Km11wnr

From the definition of K,,,, K,., = 3/2— (n/m)? (eqn (56)), we substitute m = 3 and n = 4 into
K,, and get K,, < 0. Therefore, the occurrence of unbounded solutions exists if either g5 < 0 or



4244 Y.-M. Wang | International Journal of Solids and Structures 36 (1999) 4225—4250

«
o

Amplitude
0.2

0.1

T | T | T |
0.00 40.00 80.00 120.00
Dimensionless Time

0.00003
|

Amplitude
0.00002
|

[ ' I ' [
0.0 1000 200.0 300.0
Dimensionless Time

0.00000

Fig. 6. Time history of the amplitude a, for w, = 0.75, M = 0.5 and & = 0.05 (bottom plot) and & = 0.08 (top plot).

oy = —4/3 Ky, Note that in the case of one-component parametric resonance unbounded solution
occurs only when the detuning parameter eo; is zero. In addition, it is mentioned here that from
eqn (77), we observed that the occurrence of unstable solutions is independent of the piston mass
ratio M.

Figure 8 shows the variations of the crank ratio ¢ with the detuning parameter &o5. In this figure,
the solid line denotes the values of corresponding parameters such that the unstable solution
occurs. As an example, if the crank ratio ¢ is chosen to be 0.1 then unstable motion of the system
exists when eo; is near either —0.066 or 0.426. If £ is set to be 0.2 unbounded solution occurs when
g5 1s close to —0.192. This is verified in Figs 9 and 10.

Figure 9 shows the manner in which the amplitude a; is plotted with the detuning parameter &o;
for £ = 0.1 and clearly indicates unbounded solutions occur when the detuning parameter eo; is
close to —0.066 and 0.426. As mentioned previously, the response of the system becomes unlimited
when the internal frequency is equal to one. Therefore, unbounded solution exists when the
detuning parameter g, is close to one.

Figure 10 presents the long-time behavior of the amplitude a; for ¢ = 0.2 and M = 0.5 with two
different values of detuning parameter ¢a;. The lower one is related to the case when o5 = —0.192
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Fig. 7. Transition curves emanating from o, = 1/2 and w, = 4w, in the éw plane for M = 1.0.

and the upper one is connected to the case when eo; = —0.4. The results evidently show the
existence of unbounded (upper plot) and bounded solutions.

The variation of amplitude a; with the crank ratio £ for ¢g; = 0.2 (w; = 1.8) is shown in Fig.
11, where the solid line denotes A = 0.5 and the dashed line is related to M = 1.0. The existence
of the amplitude in Fig. 11 is verified by the time history of solution for selected parameters,
M = 1.0 and & = 0.13, and is given by Fig. 12.

4. Conclusions

In this study, the weak form of the occurrence of two-component parametric resonance are
obtained. The mechanics of a slider-crank mechanism and the phenomena produced by the
existence of two-component parametric resonance are studied.



4246 Y.-M. Wang | International Journal of Solids and Structures 36 (1999) 4225—4250

0.60 —
0.40 —|
8
5
m —
£
St
O
0.20 —
0.00 I , i , i ,

-0.40 0.00 0.40
Detuning Parameter

Fig. 8. The curves of unstable solutions emanating from w; = 2 in the ¢ —¢o; plane.

Results of the study show that for the case of one-component parametric resonance, which is a
special case of the two-component model, regions of instability coincide with the linear result as
reported by other authors (e.g. Badlani and Kleinhenz (1979)). However, in the condition of
two-component resonance, new regions of instability of solutions are found (e.g. Figs 3 and 8).
This is due to modal interactions caused by the existence of two-component parametric
resonance.

For the case of two-component parametric resonance under the condition when one of the
natural frequencies of the system is near twice of the excitation, higher vibrating modes, the
existence of unstable motion of the system varies with the crank ratio (Fig. 8). However, this
phenomenon was not able to be observed in the one-component parametric resonance (single
mode condition). In that case, unbounded motion occurs only when the detuning parameter &0 is
equal to zero (eqn (68) with m = 3, 6, = f,., = f.., = 0). In addition, the result also shows that the
mass ratio of the slider plays no effect to the occurrence of unstable motion.
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Fig. 9. The amplitude a; vs the detuning parameter ¢ag; for £ = 0.1.
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Appendix

oT(n, A (s T i
gZ1T) = —C¢cost+2Ecost Y, Ap(r)sinknn—<Esint Y. A (x) sinkny
k=1 k=1

+ & [sin’t — (cost)y] —; & cos Tsin’t
T(n,1t) = —Ecost(n—1)+MEcost—1I,Esint Z (km)® cos kmn|,—
k=1

1

—25cosr<i Ak(T)JI sinknndn>+5sim<§ Ak(r)J

k=1 n

sin kmty dn)
+Esint(n — 1) + ME* cos 2t —3 €2 cost(n* — 1)

+3& costsin’t(n—1)—3 & Mcos tsin’t+3 &3 M cos Tsin 2t

, l o I[(=D7=1 (=D"-1
o = J (cosinn) sin jandy = 2[ i—phn Gt }(1 —0;)

S 1 1[(=D)7=1 (=1)*"-1
nss = = —0.. — _ —5..
o L n(sin inn) sinjmn dn 4541"' > [ (i—j)m (i) (1—9;)

where ¢,; is the Dirac delta function.
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