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Abstract

The objective of this paper is an analytical and numerical study of the dynamics and dynamic instability
of a slider!crank mechanism with an inextensible elastic coupler[ Special attention is given to the phenomena
arising due to modal interactions produced by the existence of multi!component\ speci_cally two!component\
parametric resonance[ Such modal couplings are very common in the bending!bending motions of _xed:
rotating beams[ The two!component parametric resonance occurs when one of the natural frequencies of
~exible parts of the mechanism is one!half or twice of the excitation frequency and simultaneously the sums
or the di}erences among the internal frequencies are the same\ or neighboring\ as the frequency of excitation[
The e}ects of two!component parametric resonance post on instability condition are also investigated[
Resonance generated by more than two component modes are neglected due to its remote probability of
occurrence in nature[ The mechanics of the problem is Newtonian[ Methods of analysis will consist of the
dynamics of small deformations superimposed on the undeformed state[ Without loss of generality and
based on the EulerÐBernoulli beam theory\ the coupled nonlinear equations of motion of a slider!crank
mechanism with an inextensible ~exible linkage are derived[ The Newton|s second law is used to obtain the
boundary constraints at the piston end[ Galerkin|s procedure was used to remove the dependence of spatial
coordinates in the partial di}erential equations[ The method of multiple time scales is applied to consider
the steady state solutions and the occurrence of dynamic instability of the resulting multidegree!of!freedom
dynamical system with time!periodic coe.cients[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

A great deal of work has been done on the problem of parametric excitations of mechanisms
with ~exible components[ Typically due to the e}ect of inertia\ these elastic links are subject to
axial and transverse forces[ The mathematical model of the problem then reduces to a system of
coupled dynamic equations with time!periodic coe.cients[
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Badlani and Kleinhenz "0868# discussed the dynamic stability of a slider!crank mechanism with
an elastic connecting rod under the assumptions of EulerÐBernoulli and Timoshenko beam theories
respectively[ They pointed out that new regions of instability exist when the e}ect of rotary inertia
and shear deformation are taken into account[ Badlani and Midha "0871# analyzed the same
manner except that the e}ect of initial curvature of the ~exible link is involved[ They developed a
simple model that neglects the higher modes of vibrations and the interactions among amplitudes[
Their results show that even a very small initial curvature of the coupler exists\ the transient and
steady!state solutions are ampli_ed signi_cantly[

Zhu and Chen "0872#\ and Jasinski et al[ "0869# considered the problem of dynamic stability of
a slider!crank mechanism with an elastic connecting rod[ They assumed that the ratio of crank
radius to the coupler is a small quantity[ In the former paper\ the authors applied perturbation
method to the resulting equations of motion and obtained the Mathieu!type equations[ Regions
of dynamic instability then are determined on the basis of Mathieu equations[ In the second paper\
they employed the averaging method of Krylor and Bogoliubov to the equations of motion[
The dynamic stability and steady state solutions are obtained from the resulting autonomous
system[

Tadjbakhsh and Younis "0875# employed the Floquet theory to analyze the dynamic stability
of a slider!crank mechanism with multi!links under the assumption of small deformations in
the displacement _eld[ They pointed out that the small deformation motion of each link
is not in~uenced by the ~exibility of other links[ The individual stability criteria can be used to
evaluate the overall dynamic stability of a ~exible mechanism with multiple connecting
rods[

Halbig and Beale "0884# carried out an experimental model to observe the dynamic responses
of a ~exible slider!crank mechanism at very high speed[ They performed their experiments over a
wide range of speeds as well as the crank length[ They observed the occurrence of parametric
resonance and determined regions of periodic doubling and ampli_ed response[

Hsieh and Shaw "0883# analyzed the dynamic response and correspondingly the stability of a
slider!crank by the method of multiple time scales[ They discussed the phenomena produced by
the occurrence of primary\ superharmonic and subharmonic resonances[ However\ only single
resonant mode was considered in their modeling[

It is known that the multi!component parametric resonance that exists depends not only on the
parametric excitations but also on the commensurable relations of frequencies and the degrees of
freedom of the system "Nayfeh and Mook\ 0868#[ For a n degree!of!freedom coupled system with
time!periodic coe.cients\ the existence of parametric resonance can have one or more components
when one or more internal "natural# frequencies of the system and the excitation frequency are
commensurable or nearly commensurable[ The two!component parametric resonance then exists
when one of the natural frequencies of ~exible parts of the system is one!half or twice of the
excitation frequency and simultaneously the sums or the di}erences of natural frequencies of the
system are commensurable with the frequency of parametric excitation[

Results of present study indicate that the occurrence of two!component parametric resonance
ampli_es the region of instability and the possibility of existence of unstable motions[ This is due
to the modal interactions among modes and was not found in the analysis given by other authors
"e[g[ Badlani and Kleinhenz "0868#\ Hsieh and Shaw "0883##[
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Fig[ 0[ System con_guration[

1[ Basic formulas

We consider a slider!crank mechanism with an inextensible initially straight elastic coupler as
shown in Fig[ 0[ The mechanism consists of the rigid crank of radius r^ the elastic link of length l^
a distributed mass\ m\ per unit length^ and the frictionless piston of mass M[

In Fig[ 0\ the i and j represent the unit vectors of the Cartesian frame in the plane of the
mechanism^ ei and ej represent the unit vectors of the moving coordinate "x\ y\ z coordinates#
system whose x "ei# coordinate is along the centroidal line of the straight elastic link^ er is the unit
vector along the crank[ The position vector of point s along the link at time t is represented by
R"s\ t# and is given as

R"s\ t# � rer¦r � rer¦"x"s#¦u"s\ t##ei¦v"s\ t#ej "0#

where u"s\ t# and v"s\ t# are the axial and the transverse displacements of the rod from the dynamic
undeformed state\ respectively\ and

er � cos"b−f#ei¦sin"b−f#ej � cos bi¦sin bj

ei � cos fi¦sin fj

ej � −sin fi¦cos fj

where b is the angular displacement of the crank[ The acceleration of points along the coupler in
the moving coordinate system\ R\tt\ then is obtained from

R\tt �
d1

dt1
ðR"s\ t#Ł � ð−rb\tt sin"b−f#−rb1

\t cos"b−f#¦u\tt−"x¦u#f1
\t

−1v\tf\t−vf\ttŁei¦ðrb\tt cos"b−f#−rb1
\t sin"b−f#¦v\tt¦"x¦u#f\tt

¦1u\tf\t−vf1
\tŁej 0 axei¦ayej "1#
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Fig[ 1[ Force equilibrium diagram[

where the subscript t denotes the time di}erentiation and

sin"b−f# ¼ sin b¦
0
1

r
l

sin 1b−
0
1 0

r
l1

1

sin2b

cos"b−f# ¼ cos b−
r
l

sin1b−
0
1 0

r
l1

1

cos b sin1b[

The angle f and its time derivatives in the above equation can be eliminated from the following
kinematic relationships "Viscomi et al[ 0860#]

sin f � −
r
L

sin b

f\t � −
r
L

b\t cos b

f\tt �
r
L

b1
\tt sin b−

r
L

b\tt cos b "2#

The equations governing the motion of the system in the moving coordinate frame "x\ y\ z
coordinates# can be derived from the dynamic equilibrium of forces and conservation of momenta[
From Figs 0 and 1\ one obtains

F\s � mR\tt\ 9 ³ s ³ l\ t × 9 "3#
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MÞ \s¦V � 9\ "4#

with the inextensibility constraint

r \s = r\s � 0\ "5#

where the subscript s denotes the s di}erentiation[ The force F is given by

F � Hei¦Pej �"T cos u¦V sin u#ei¦"T sin u−V cos u#ej "6#

where T is the axial force in the coupler^ V is the transverse force in the coupler^ E and I are the
Young|s modulus and the area moment of inertia of the coupler respectively^ and MÞ � −EIv\ss[
The unit tangent and normal vectors\ t and n\ to the coupler con_guration are given by
t �"0¦u\s#i¦v\sj � cos ui¦sin uj and n � −v\si¦"0¦u\s#j � −sin ui¦cos uj[

Substitution of eqns "1#\ "2#\ "4#\ and "6# into eqn "3#\ the equations of motion in directions ei

and ej yield

ðT"0¦u\s#¦EIv\sssv\sŁ\s � max\ 9 ³ s ³ l\ t × 9\ "7#

ðTv\s−EIv\sss"0¦u\s#Ł\s � may\ 9 ³ s ³ l\ t × 9 "8#

where ax and ay are de_ned by eqn "1#[ Therefore\ eqn "8# represents the motion of the linkage in
the ej direction and eqn "7# determines the axial force T"s\ t# of the coupler[

As shown in Fig[ 0\ two types of boundary conditions are stated[ The _rst is that the coupler is
assumed to be hinged at each end[ Therefore\ the longitudinal displacement vanishes at s � 9[ The
moment and transverse displacement vanish at s � 9\l[ The second is when Newton|s second law
is employed to provide a force balance between the axial and shear forces of the rod and the inertia
force of the frictionless piston "e[g[ Badlani and Kleinhenz\ 0868#[ The boundary conditions then
are]

u"9\ t# � v"9\ t# � v"l\ t# �
11v"9\ t#

1s1
�

11v"l\ t#

1s1
� 9 "09#

"H¦Max# cos f−"P¦May# sin f � 9 at s � l "00#

From eqn "00#\ one obtains

T"l\ t# ¼ −Max−EIv\sssv\s¦tan f"−EIv\sss¦May# at s � l "01#

To determine the axial force T"s\ t#\ we integrate eqn "7# and use the boundary constraint\ eqn
"01#[ After some manipulations\ the result yields

T"s\ t#×"0¦u\s#¦EIv\sssv\s � g
s

9

max ds¦C"t# "02#

where C"t# is constant of integration and is given by

C"t# � T"l\ t#×"0¦u\s# =s�l¦EIv\sssv\s =s�l−g
l

9

max ds

This result can be inserted into eqn "8#[
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The equations of motion of the slider!crank mechanism with constant angular velocity\ v¼ � con!
stant\ in dimensionless form can be obtained by introducing the following dimensionless quantities]

t � v¼ t\ u¼ �
u
l

\ v¼ �
v
l

\ j �
r
l

\ h �
s
l

\

I
m �
EI

ml3v¼ 1
\ I
M �

EI

Ml2v¼ 1
\ M
 �

M
ml

"03#

Substitution of eqn "03# into eqn "8#\ one gets

v¼\tt¦I
m

13v¼

1h3
−j1" cos1t#v¼−

1T"h\ t#
1h

1v¼
1h

−T"h\ t#
11v¼

1h1
−1j cos tu¼ \t

¦j sin tu¼ � j sin t"0−h#¦0
1
j1 sin 1t−0

1
j2 sin2t "04#

where

1T"h\ t#
1h

� −j cos t¦1j cos tv¼\r−j sin tv¼¦j1 ð sin1t−" cos1t#hŁ¦
0
1

j2 cos t sin1t

and

T"h\ t# � −j cos t"h−0#¦M
 j cos t−1j cos t g
0

h

v¼\t dh¦j sin t g
0

h

v¼ dh

¦I
mj sin tv¼ý?=h�0¦j1 sin1t"h−0#¦M
 j1 cos 1t

−0
1
j1 cos1t"h1−0#¦0

1
j2 cos t sin1t"h−0#−0

1
j2M
 cos t sin1t¦0

1
j2M
 cos t sin 1t

Examination of the dynamics governed by eqn "04# is the main aim in this study[
We begin by representing u¼ and v¼ as continuous functions[ Let

v¼ � s
�

i�0

Ai"t# sin iph\ 9 ³ h ³ 0\ t × 9\ "05a#

u¼ "h\ t# � −
0
1

s
�

i�0

s
�

k�0

Ai"t#Ak"t#Rik"h# "05b#

where

Rik"h# �"ip#"kp# g
h

9

cos iph cos kph dh

Thus\ the boundary condition\ eqn "09#\ and the constraint relation\ eqn "5#\ are satis_ed[ Now\
eqns "05a# and "05b# are substituted into the normal equation of motion\ eqn "04#\ which yields

s
�

i�0

ðAÝi¦""ip#1I
m−j1 cos1t#AiŁ sin iph
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−1j cos t s
�

i�0

s
�

k�0

ð"Aþi"t#Ak"t#¦Ai"t#Aþk"t#ŁRik"h#

¦j sin t s
�

i�0

s
�

k�0

Ai"t#Ak"t#Rik"h#−
1T"h\ t#

1h
s
�

i�0

"ip#Ai cos ith

¦T"h\ t# s
�

i�0

"ip#1Ai sin iph

� 1j sin t"0−h#¦j1 sin 1t−j2 sin2t

t × 9\ j � 0\ 1\ 2\ [ [ [ \" = # �
d
dt

"06#

where 1T"h\ t#:1h and T"h\ t# in eqn "06# are given in the Appendix[ It is mentioned here that in
eqn "06# the terms higher than v¼1 are neglected by the assumption that v¼ is a small quantity[

The approximate solution of the slider!crank mechanism is to be obtained by employing the
Galerkin|s method[ Using Galerkin|s procedure for minimizing error\ we multiply eqn "06# by
sin jp h and integrate eqn "06# with respect to h from 9 to 0\ thus obtaining

AÝj"t#¦"v1
j −j1 cos1t#Aj"t#−1j cos t s

�

i�0

s
�

k�0

ðAþi"t#Ak"t#¦Ai"t#Aþk"t#ŁR
ikj"h#

¦j sin t s
�

i�0

s
�

k�0

Ai"t#Ak"t#R
ikj"h#−1 s
�

i�0

"ip# $−j cos tacs
ij Ai"t#

¦1j cos tAi"t# s
�

k�0

acss
ikj Aþk"t#−j sin tAi"t# s

�

k�0

acss
ikj Ak"t#%

−16−
0
1

j cos t" jp#1"M
 ¦0#Aj"t#¦j cos t s
�

i�0

"ip#1ahss
ij Ai"t#

¦
0
1
"1j cos t−j sin t#" jp#1Aj"t# s

�

i�0

"−0#i

ip
Ai"t#

¦"1j cos t−j sin t# s
�

i�0

s
�

k�0

"kp#1

ip
acss

ikj Aþi"t#Ak"t#%
¦

0
1
" jp#1I
mj sin tAj"t#0s

�

i�0

"−0#i"ip#2Ai"t#17
−j sin t s

�

i�0

s
�

k�0

R
ikjAi"t#Ak"t#¦1j cos t s
�

i�0

s
�

k�0

R
ikj"Aþi"t#Ak"t#¦Ai"t#Aþk"t##

�
1
jp

j sin t¦
1
jp

ð0−"−0#jŁj1" sin 1t−j sin2t#\t × 9\ j � 0\ 1\ 2\ [ [ [ \" = # �
d
dt

"07#
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where

v1
j � " jp#3I
m and R
ikj"h# � g

0

9

Rik"h# sin jph dh[

The results of the integration of the cosine and sine functions in the above equation acs
ij and ahss

ij

are given in the Appendix[
To analyze the system governed by eqn "07#\ we allow the response of the system to be small

but _nite[ Thus\ the method of multiple time scales can be used to predict the responses of the
system[ According to this method\ we assume that the amplitude\ Aj"t#\ has the expansion "Nayfeh\
0868#

Aj"t^ o# � oA0j"t9\ t0\ t1\ [ [ [ #¦o1A1j"t9\ t0\ t1\ [ [ [ #¦o2A2j"t9\ t0\ t1\ [ [ [ #¦ = = =

tn � ont\ n � 9\ 0\ 1\ [ [ [

d
dt

�
1

1t9

¦o
1

1t0

¦o1 1

1t1

¦= = = 0 D9¦oD0¦o1D1¦= = =

d1

dt1
0 D1

9¦1oD9D0¦o1"D1
0¦1D9D1#¦= = = "08#

where o is a measure of the amplitude of the response and is small compared to unity[
For the purpose of studying the parametric resonance of the non!autonomous di}erential

equations\ we substitute "08# into the equation of motion\ "07#\ and set j � oj¼[ After manipulating
these equations\ we equate coe.cients of equal power of o and obtain to order one and two]

o0] D1
9A0j¦v1

j Aij �
1
jp

j¼ sin t9 "19#

o1] D1
9A1j¦v1

j A1j � −1D9D0A0j−j¼ cos t9" jp#1"M
 ¦0#A0j

−1j¼ cos t9 s
�

i�0

"ip#acs
ij A0j¦1j¼ cos t9 s

�

i�0

"ip#1ahss
ij A0i

¦
1
jp

ð0−"−0#jŁj¼1 sin 1t9 "10#

It is shown in eqn "19# that unbounded oscillation occurs when the frequency vj is near 0[
Therefore\ in the following\ the conditions considered are related to the cases when the natural
frequency vj is away from 0[

From eqn "19#\ it is seen that the amplitude\ A0j\ is harmonic in t9\ and its solution can be
represented as

A0j � aj cos"vjt9¦fj#¦
1j¼

" jp#"a1
j −0#

sin t9 0 aj cos bj¦j¼Lj sin t9 "11#

where aj � aj"t0\ t1\ [ [ [ # is the amplitude of response^ fj � fj"t0\ t1\ [ [ [ # is the phase angle and
Lj � 1:" jp#"v1

j −0#[
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To seek the solution of A1j de_ned by "10#\ we substitute "11# into "10#[ After some manipulations\
we obtain]

D1
9A1j¦v1

j A1j � 1vj ð"D0aj# sin bj¦aj"D0fj# cos bjŁ

−0
1
j¼ " jp#1"M
 ¦0#aj" cos b¦

0j¦cos b−
0j #−j¼ s

�

i�0

ð"ip#acs
ij −"ip#1ahss

ij Łai" cos b¦
0i¦cos b−

0i #

−j¼1 6
0
1

jp#1"M
 ¦0#Lj¦ s
�

i�0

ð"ip#acs
ij −"ip#1ahss

ij ŁLi−
1
jp

ð0−"−0# jŁ7 sin 1t9 "12#

where b¦
0j �"vj¦0#t9¦fj and b−

0j �"vj−0#t9¦fj[
Nayfeh and Mook "0868# pointed out that a multidegree!of!freedom dynamic system with

parametric excitation will experience multi!components parametric resonance when two or more
internal frequencies and the excitation frequency are commensurable or nearly commensurable[
For a dynamic system with _nite degrees of freedom similar to that de_ned by "12#\ parametric
resonance may exist when vm ¼ 0

1
V\ vn−vm ¼ V"n × m#\ and vn¦vm ¼ V[ Here vm is the dimen!

sionless internal frequency of the mth mode of vibration and V is the frequency of excitation[
For the purpose of studying the e}ects of multi!component parametric resonance to the motion

of the slider!crank mechanism\ we selected the following two sets of frequencies so that the two!
component parametric resonance de_ned by eqn "12# exist[ These are] "0# vm ¼ 0

1
and vn−vm ¼ 0\

n × m\ and "1# vm ¼ 1 and vn−vm ¼ 0\ n × m[

1[0[ Case 0

For the case of two!component resonance when vm ¼ 0
1
and vn−vm ¼ 0\ n × m[

In order to express the commensurable relations of vm to 0
1

and vn−vm to 0\ the detuning
parameters sm and sn are introduced]

0
1
� vm¦osm "13#

0 � vn−vm¦osn[ "14#

where vn �"n:m#1vm[
The relationship between sm and sn can be determined from eqns "13# and "14# which yield

osn � $2−0
n
m1

1

%vm¦1osm 0 Kmnvm¦1osm "15#

For the di}erences of the arguments of the cosine and sine functions of unequal arguments we
have

b−
0m �"vm−0#t9¦fm � −"vmt9¦fm#−1"smt0−fm# 0 −"bm¦1dm# "16#

�"vm¦0#t9¦fm �"vnt9¦fn#¦"snt0¦fm−fn# 0 bn−dmn "17#

and similarly

b−
0n � "vn−0#t9¦fn � "vmt9¦fm#−"snt0¦fm−fn# � bm−dmn "18#
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where dm � smtG−fm and dmn � sntG¦fm−fn[ Therefore dm � dm"t0\ t1\ [ [ [ # and
dnm � dnm"t0\ t1\ [ [ [ # are two new phase angles[ From the de_nition of sm and sn we have

D0fm � sm−D0dm "29#

and

D0fn � sn¦D0fm−D0dmn "20#

Returning to "12# the solvability conditions are the vanishing of the secular terms[ These number
four\ two from each component equation[ These are respectively]

1vmD0am¦j¼ ð0
1
"mp#1"M
 ¦0#¦fmmŁam sin 1dm−j¼fnmam sin dnm � 9 "21#

1vmamD0fm−j¼ ð0
1
"mp#1"M
 ¦0#¦fmmŁam cos 1dm−j¼fnman cos dmn � 9 "22#

1vnD0an¦j¼fmnam sin dmn � 9 "23#

1vnanD0fn−j¼fmnam cos dmn � 9 "24#

where fnm � ð"np#acs
nm−"np#1ahss

nmŁ[
The main purpose of eqns "21#Ð"24# is to determine the response of motion in steady state and

the regions of unstable motion[
To study the local stability of the _xed point and the steady state solutions\ we represent the

_rst order problem in the form

A0j � Hj"t0\ t1\ [ [ [ # exp"i¼vjt9#¦HÞj"t0\ t1\ [ [ [ # exp"−i¼vjt9#

−i¼ 0
1
j¼Lj" exp"i¼t9#−exp"−i¼t9##\ j � 0\ 1\ 2\ [ [ [ "25#

where i¼� z−0 and HÞj is the complex conjugate of Hj[ The relation between the amplitude aj and
the coe.cient Hj can be obtained by comparing "11# and "25#\ whereby one _nds

Hj �
0
1
aj exp"i¼fj#\ j � 0\ 1\ 2\ [ [ [ "26#

where aj and fj are the amplitude and phase of the jth mode[ Therefore\ we rewrite eqns "21#Ð"24#
as

3vmi¼"D0Hm#¦1j¼f
mmHÞm exp"1i¼smt0#−1j¼fnmHn exp"−i¼snt0# � 9 "27#

3vni¼"D0Hn#¦1j¼fmnHm exp"i¼snt0# � 9 "28#

where f
mm � 0
1
"mp#1"M
 ¦0#¦fmm[

To determine the stability of two!component parametric resonance we follow the procedure
outlined in Nayfeh and Mook "0868# and let

Hk � 0
1
" xk−i¼zk# exp"i¼ukt0# � 0

1
"xk−i¼zk# exp"i¼oukt#\ k � m\ n[ "39#

Here xk and zk are real and

uk �
dfk

dt
"30#

For the resonant case\ we substitute eqn "39# with "30# into the resonant equations de_ned by eqns
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"27# and "28# and separate the real and imaginary parts[ After some manipulations\ we obtain a
set of resonant equations in terms of xk and zk[ Now\ if a small perturbation is superimposed on
xk and zk "k � m\ n# then we have

xk � x9
k¦x¼k

zk � z9
k¦z¼k "31#

Here x9
k \ z9

k \ x¼k and z¼k are the _xed points and the disturbances respectively[ The local stability of
a _xed point with respect to a small perturbation for each resonant case hence can be determined
by the eigenvalues l which are given by the zero of the determinant of the perturbation equations[

Following the procedure mentioned above\ we _rst substitute eqn "39# with "30# into eqns "27#
and "28# and then substitute eqn "31# into the new set of equations and separate the real and
imaginary parts[ After some manipulations\ we get

x¼ ?m¦umz¼m¦
j¼

1vm

f
mmz¼m¦
j

1vm

fnmz¼n � 9 "32#

z¼?m−umx¼m¦
j¼

1vm

f
mmx¼m−
j

1vm

fnmx¼n � 9 "33#

x¼ ?n¦unz¼n−
j


1vn fmnz¼m

� 9 "34#

z¼?n−unx¼ n¦
j


1vn

fmnx¼m � 9 "35#

The local stability of a _xed point with respect to a small perturbation can be determined by the
eigenvalues l which are given by the zero of the determinant of the equations of "32# through "35#[
This determinant is given by

H

H

H

H

H

H

H

H

H

H

H

H

H

l sm¦
j

1vm

f¼mm 9
j

1vm

fnm

−sm¦
j

1vm

f
mm l −
j

1vm

fnm 9

9 −
j

1vn

fmn l sm¦sn

j

1vn

fmn 9 −"sm¦sn# l

G

G

G

G

G

G

G

G

G

G

G

G

G

� 9 "36#

where f
mm � 0
1
"mp#1"M
 ¦0#¦fmm\ um � D0fm � sm\ and un � D0fm � sm¦sn[ Thus\ the charac!

teristic equation of "36# has the form

l3¦r0l
2¦r1l

1¦r2l¦r3 � 9 "37#

where
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r0 � 9

r1 � s1
m¦"sm¦sn#1−

j¼

1vm

f¼mm−
j¼1

1vmvn

fmn fnm

r2 � 9

r3 � $sm"sm¦sn#¦
j¼1

3vmvn

fmn fnm%
1

−$
j¼

1vm

fmm"sm¦sn#%
1

"38#

The solution of eqn "37# is l1 � 0
1
ð−r12zr1

1−3r3 Ł[ Therefore\ the transition values corre!
sponding to the roots of eqn "37# with the coe.cients de_ned by "38# are r3 � 9 or

sm"sm¦sn#2
j¼

1vm

f¼mm"sm¦sn#¦
j¼1

3vmvn

fmn fnm � 9 "49#

Multiplying eqn "49# by o1 and substituting eqn "15# with eqns "13# and "14# to eliminate osn in
eqn "49#[ After some manipulations\ the result yields

2"osm#1¦6Kmnvm2
2oj¼ f
mm

1vm 7"osm#2
o

1
j¼ f
mmKmn¦

o1j¼1

3 0
n
m1

1

v1
m

fmn fnm � 9 "40#

It is noted here that in the absence of internal resonance\ Kmn � fmn � fnm � 9\ eqn "40# coincides
with the result of Badlani and Kleinhenz "0868# for vm 3

0
1
[ That is\ they reduce to

osm � 2
oj¼ f
mm

1vm

� 2
oj¼

1vm $
0
1

"mp#10M
 ¦
0
11% "41#

The transition values corresponding to the roots of "40# are

osm �
0
5 $−0Kmnvm2

2oj¼ f
mm

1vm 1

2KmnvmX0 3
2oj¼ f
mm

Kmnv
1
m

¦0
oj¼

Kmnvm1
1

$0
2f
mm

1vm1
1

−
2fmn fnm

0
n
m1

1

v1
m

% "42#

Therefore\ the transition curves that separate the stable and unstable motions of the system from
vm � 0

1
and vn �"n:m#1vm in the ov plane then are given by
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vm � 0
1
−osm � 0

1
−0

5 $−"0
1
Kmn22oj¼ f
mm#

2
0
1

KmnX0 3
01oj¼ f
mm

Kmn

¦01 0
oj¼

Kmn1
1

02f
1
mm−3

fmn fnm

0
n
m1

1 1% "43a#

vn � 0
n
m1

1

vm � 0
n
m1

1

60
1
−0

5 $−"0
1
Kmn22oj¼ f
nm#

2
0
1

KmnX0 3
01ooj¼ f
mm

Kmn

¦01 0
oj¼

Kmn1
1

02f¼ 1
mm−3

fmn fnm

0
n
m1

1 1%7 "43b#

1[1[ Case 1

For the condition of two!component resonance if vm ¼ 1 and vn−vm ¼ 0[
Similar to that done in Case 0\ we let

1 � vm¦osm "44a#

0 � vn−vm¦osn "44b#

where sm and sn are the detuning parameters and

osn � $
2
1

−0
n
m1

1

%vm¦
0
1

osm 0 K
mnvm¦
0
1

osm "45#

Hence

1t9 � vmt9¦smt0

� "vmt9¦fm#¦"smt0−fm# 0 bm¦dm "46#

Returning to eqn "12#\ the solvability conditions for the case when vm ¼ 1 and vn−vm ¼ 0 are

1vmD0am−j¼ fnman sin dmn � j¼1"ð0
1
"mp#1"M
 ¦0#¦fmmŁLm−L�m# cos dm "47#

1vmamD0fm−j¼ fnman cos dmn � j¼1"ð0
1
"mp#1"M
 ¦0#¦fmmŁLm−L�m# sin dm "48#

1vnD0an¦j¼ fmnam sin dmn � 9 "59#

1vnanD0fn−j¼ fmnam cos dmn � 9 "50#

where L�m � 1:mpð0−"−0#mŁ[ Similar as before\ we rewrite eqns "47#Ð"50# as the form
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3vmi¼D0Hm¦1j¼ fnmHn exp"−i¼snt0# � i¼j¼1" f¼mmLm−L�m\ exp"i¼smt0# "51#

3vni¼D0Hn¦1j¼ fmnHm exp"i¼snt0# � 9 "52#

To determine the steady state solutions and correspondingly the local stability of the steady
state solutions\ we substitute eqn "39# with eqn "30# into eqns "51# and "52# and separate the real
and imaginary parts and obtain

x?m¦umzm−
j¼

1vm

fnmzn �
j¼1

1vm

" f¼mmLm−L�m# "53#

z?m−umxm¦
j¼

1vm

fnmxn � 9 "54#

x?n¦unzn−
j¼

1vn

fmnzm � 9 "55#

z?n−unzn¦
j¼

1vn

fmnxm � 9 "56#

To determine the steady state solutions\ we return to eqns "53#Ð"56# and set x?m
� z?m � x?n � z?n � 9 and x1

k¦z1
k � a1

k \ k � m\ n[ The result yields

am �
1j¼1" f
mmLm−L�m#vnun

3vmvnumun−j¼1fmn fnm

�
j¼1"sm¦sn#" f
mmLm−L�m#

1vm $sm"sm¦sn#−j¼1 fmn fnm

3vmvn%
0

j¼1"sm¦sn#" f
mmLm−L�m#
1vmD

"57#

an �
j¼ fmn

1vnun

am �
j¼ fmn

1vn"sm¦sn#
am "58#

where

Lm �
1

"mp#"v1
m−0#

and

D � sm"sm¦sn#−j¼1 fmn fnm

3vmvn

[

The local stability of a _xed point with respect to a small perturbation then is determined by the
zero of the determinant of eqns "53#Ð"56#[ This determinant is obtained by substituting eqn "31#
into the above four equations[ Therefore\ we have



Y[!M[ Wan` : International Journal of Solids and Structures 25 "0888# 3114Ð3149 3128

H

H

H

H

H

H

H

H

H

H

H

H

H

l sm 9 −
j

1vm

fnm

−sm l
j

1vm

fnm 9

9 −
j

1vn

fmn l sm¦sn

j

1vn

fmn 9 −"sm¦sn# l

G

G

G

G

G

G

G

G

G

G

G

G

G

� 9 "69#

where um � sm and un � sm¦sn[ The characteristic equation of "69# is

l3¦r¼1l
1¦r¼3 � 9 "60#

where

r¼1 � s1
m¦"sm¦sn#1¦

j1

1vmvn

fmn fnm

r¼3 � $sm"sm¦sn#−
j1

3vmvn

fmn fnm%
1

Similarly\ the solution of eqn "60# is l1 � 0
1
ð−r¹12zr¹1

1−3r¹3Ł[ Hence\ the transition values
corresponding to the roots of eqn "60# are r¼3 � 9 which implies

sm"sn¦sn#−
j1

3vmvn

fmnfnm � 9 "61#

Note that eqn "61# is the same result as D de_ned by eqn "57#[ Therefore\ unbounded solutions
exist if D � 9[ Next\ we multiply eqn "61# by o1 and substitute eqn "45# with eqns "44a# and "44b#
into eqn "61# to eliminate osn and obtain

2
1
"osm#1¦K
mnvm"osm#−

o1j¼1

3vmvn

fmnfnm � 9 "62#

Thus\ the detuning parameter osm corresponding to the roots of "62# are

osm �
0
2 $−K
mnvm2K
mnvmX0¦

2o1j¼1fmn fnm

1K
1
mnv

2
mvn % "63#

The curves that unbounded motions of the system occur from vm � 1 and vn �"n:m#1vm in the
jv plane then are given by
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vm � 1−osm � 1−
1
2 $−K
mn2K
mnX0¦

2o1j¼1fmn fnm

21 0
n
m1

1

K
1
mn

% "64#

vn � 0
n
m1

1

vm � 0
n
m1

1

"1−osm#

� 0
n
m1

1

61−
1
2 $−K
mn2K
mnX0¦

2o1j¼1fmn fnm

21 0
n
m1

1

K
1
mn

%7 "65#

2[ Numerical results and discussions

Without loss of generality and considering the commensurable relations among frequencies and
the probability of occurrence in nature we selected the following sets of commensurable relations
of vibrating modes to determine the basic characteristics of the occurrence of two!component
parametric resonance[ For the case of vm 3

0
1
and vn−vm 3 0 we chose m � 0 and n � 1 to present

the occurrence of two!component parametric resonance[ For the condition that vm 3 1 and
vn−vm 3 0 we selected m � 2 and n � 3[ It is recalled that the parameter j is the crank ratio^ vj

is the dimensionless natural frequency and is de_ned by

vj �" jp#1X
EI

ml3v¼ 1

where v¼ is the constant angular velocity of the crank[
In addition to the stability analysis\ the existence of perturbation solutions is veri_ed by numeri!

cally integrating the modulation equations by the Runge!Kutta method with sixth order accuracy[
In the following _gures\ Figs 2Ð6 are related to the case when v0 3

0
1
and v1 � 3v0[ The solid

and chain!dot lines in these _gures denote respectively the _rst and second modes of vibrations[
The dash lines represent the _rst vibrating mode under the condition of one!component parametric
resonance\ v0 3

0
1
[ As mentioned previously\ the validity of the model is veri_ed by numerically

integrating the modulation equations\ eqns "21#Ð"24#[
Figure 2 presents the transition curves that separate the regions of bounded "stable# and

unbounded "unstable# motions emanating from v0 � 0
1
and v1 � 3v0 in the jv parameter plane

for M
 � 9[4\ where the shaded area denotes the region of unstable motion for the _rst vibrating
mode[ It is interesting that in this case\ unbounded solutions almost always exist when the frequency
of _rst mode is smaller than one!half of the excitation frequency\ except a tiny region of small
crank ratio[ The occurrence of this new region of instability is\ perhaps\ due to the variation of
energy between modes[ The existence of bounded and unbounded solutions is evident in Figs 3Ð7[

Figure 3 shows the long!time behavior of the amplitude a0 for M
 � 9[4 and v0 � 9[2 with two
di}erent values of crank ratio\ j � 9[91 and j � 9[914[ The lower plot in Fig[ 3 is related to the
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Fig[ 2[ Transition curves emanating from v0 � 0:1 and v1 � 3v0 in the jv plane for M
 � 9[4[

case when j � 9[91 is encountered[ The result clearly indicates the existence of bounded "j � 9[91#
and unbounded "j � 9[914# solutions[ Figure 4 illustrates similar information to that shown in
Fig[ 3\ except that in Fig[ 4\ v0 is set to be 9[97 with j � 9[904 "lower plot# and j � 9[97 "upper
plot#[ The result evidently shows in the case of two!component parametric resonance unstable
motion may occur even the fundamental frequency is far less than the excitation frequency[ This
event was not found in the condition of one!component parametric resonance[

Figure 5 illustrates the time history of the amplitude a0 for M
 � 9[4 and v0 � 9[64[ In the lower
plot j is set to be 9[94[ In the top plot j is chosen to be 9[97[ It evidences that the transition curves
separate the bounded "j � 9[94# and unbounded "j � 9[97# motions of the system[

The transition curves emerging from v0 � 0
1
and v1 � 3v0 in the jv parameter plane for M
 � 0[9

is shown in Fig[ 6[ Figure 6 and Fig[ 0 illustrate that it is generally true that the piston mass ratio
M
 and the crank ratio j enlarge the regions of instability[ In addition\ the lower bound of the
transition values of frequency diminishes as the piston mass ratio increases[ In other words\ under
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Fig[ 3[ Time history of the amplitude a0 for v0 � 9[2\ M
 � 9[4 and j � 9[91 "bottom plot# and j � 9[914 "top plot#[

certain conditions\ the motion of the system may become fully unstable when the fundamental
frequency is lower than one!half of the excitation frequency[

In the following\ the numerical study of solutions for the case when v2 3 1 and v1 � 3v0 is
carried out to determine some of the characteristics of response in steady state[

From eqn "58#\ we _nd that unbounded solutions exist if D � 9[ Hence\ boundaries of the
unstable solutions\ as functions of the detuning parameter osm\ m � 2\ must be determined[ We
recall

am �
j¼1"sm¦sn#" f
mmLm−L�m#

1vm $sm"sm¦sn#−j¼1 fmn fnm

3vmvn%
0

j¼1"sm¦sn#" f
mmLm−L�m#
1vmD

"57#

Therefore\ unbounded solution exists if D � 9 which implies

2
1

"osm#1¦K
mnvm"osm#−
o1j¼1

3vmvn

fmn fnm � 9
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Fig[ 4[ Time history of the amplitude a0 for v0 � 9[97\ M
 � 9[4 and j � 9[904 "lower plot# and j � 9[97 "upper plot#[

or

j � oj¼ �

1 0
n
m1vm

zfmn fnm
X

2
1
"osm#1¦K
mnvm"osm# "66#

where =fmnfnm= × 9[ Note that in the above equation j is the crank ratio and has to be no less than
zero which implies

"osm#ð2
1
"osm#¦K
mnvmŁ − 9 "67#

The result of eqn "67# yields the following two sets of solutions]

"0# osm − 9 and osm − −1
2
K
mnvm[

"1# osm ¾ 9 and osm ¾ −1
2
K
mnvm[

From the de_nition of K
mn\ K
mn � 2:1−"n:m#1 "eqn "45##\ we substitute m � 2 and n � 3 into
K
mn and get K
23 ³ 9[ Therefore\ the occurrence of unbounded solutions exists if either os2 ¾ 9 or
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Fig[ 5[ Time history of the amplitude a0 for v0 � 9[64\ M
 � 9[4 and j � 9[94 "bottom plot# and j � 9[97 "top plot#[

os2 − −3:2 K
23[ Note that in the case of one!component parametric resonance unbounded solution
occurs only when the detuning parameter os2 is zero[ In addition\ it is mentioned here that from
eqn "66#\ we observed that the occurrence of unstable solutions is independent of the piston mass
ratio M
 [

Figure 7 shows the variations of the crank ratio j with the detuning parameter os2[ In this _gure\
the solid line denotes the values of corresponding parameters such that the unstable solution
occurs[ As an example\ if the crank ratio j is chosen to be 9[0 then unstable motion of the system
exists when os2 is near either −9[955 or 9[315[ If j is set to be 9[1 unbounded solution occurs when
os2 is close to −9[081[ This is veri_ed in Figs 8 and 09[

Figure 8 shows the manner in which the amplitude a2 is plotted with the detuning parameter os2

for j � 9[0 and clearly indicates unbounded solutions occur when the detuning parameter os2 is
close to −9[955 and 9[315[ As mentioned previously\ the response of the system becomes unlimited
when the internal frequency is equal to one[ Therefore\ unbounded solution exists when the
detuning parameter os2 is close to one[

Figure 09 presents the long!time behavior of the amplitude a2 for j � 9[1 and M
 � 9[4 with two
di}erent values of detuning parameter os2[ The lower one is related to the case when os2 � −9[081
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Fig[ 6[ Transition curves emanating from v0 � 0:1 and v1 � 3v0 in the jv plane for M
 � 0[9[

and the upper one is connected to the case when os2 � −9[3[ The results evidently show the
existence of unbounded "upper plot# and bounded solutions[

The variation of amplitude a2 with the crank ratio j for os2 � 9[1 "v2 � 0[7# is shown in Fig[
00\ where the solid line denotes M
 � 9[4 and the dashed line is related to M
 � 0[9[ The existence
of the amplitude in Fig[ 00 is veri_ed by the time history of solution for selected parameters\
M
 � 0[9 and j � 9[02\ and is given by Fig[ 01[

3[ Conclusions

In this study\ the weak form of the occurrence of two!component parametric resonance are
obtained[ The mechanics of a slider!crank mechanism and the phenomena produced by the
existence of two!component parametric resonance are studied[
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Fig[ 7[ The curves of unstable solutions emanating from v2 � 1 in the j−os2 plane[

Results of the study show that for the case of one!component parametric resonance\ which is a
special case of the two!component model\ regions of instability coincide with the linear result as
reported by other authors "e[g[ Badlani and Kleinhenz "0868##[ However\ in the condition of
two!component resonance\ new regions of instability of solutions are found "e[g[ Figs 2 and 7#[
This is due to modal interactions caused by the existence of two!component parametric
resonance[

For the case of two!component parametric resonance under the condition when one of the
natural frequencies of the system is near twice of the excitation\ higher vibrating modes\ the
existence of unstable motion of the system varies with the crank ratio "Fig[ 7#[ However\ this
phenomenon was not able to be observed in the one!component parametric resonance "single
mode condition#[ In that case\ unbounded motion occurs only when the detuning parameter os2 is
equal to zero "eqn "57# with m � 2\ sn � fmn � fnm � 9#[ In addition\ the result also shows that the
mass ratio of the slider plays no e}ect to the occurrence of unstable motion[
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Fig[ 8[ The amplitude a2 vs the detuning parameter os2 for j � 9[0[

Fig[ 09[ Time history of the amplitude a2 for M
 � 9[4\ j � 9[1 and os2 � −9[3 "v2 � 1[3# "bottom plot# and os2 � −9[081
"v2 � 1[081# "top plot#[
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Fig[ 00[ The amplitude a2 vs the crank ratio j for os2 � 9[1 "v2 � 0[7# and M
 � 9[4 "solid line# and M
 � 0[9 "dashed
line#[

Fig[ 01[ The long!time behavior of the amplitude a2 for M
 � 0[9\ os2 � 1 and j � 9[02[
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Appendix

1T"h\ t#
1h

� −j cos t¦1j cos t s
�

k�0

Aþk"t# sin kph−j sin t s
�

k�0

Ak"t# sin kph

¦j1 ð sin1t−" cos1t#hŁ−0
1
j2 cos t sin1t

T"h\ t# � −j cos t"h−0#¦M
 j cos t−I
mj sin t s
�

k�0

"kp#2 cos kph=h�0

−1j cos t 0 s
�

k�0

Aþk"t# g
0

h

sin kph dh1¦j sin t 0 s
�

k�0

Ak"t# g
0

h

sin kph dh1
¦j1 sin1t"h−0#¦M
 j1 cos 1t−0

1
j1 cos1t"h1−0#

¦0
1
j2 cos t sin1t"h−0#−0

1
j2M
 cos t sin1t¦0

1
j2M
 cos t sin 1t

acs
ij � g

0

9

" cos iph# sin jph dh �
0
1 $

"−0#i−j−0
"i−j#p

−
"−0#i¦j−0

"i¦j#p %"0−dij#

ahss
ij � g

0

9

h" sin iph# sin jph dh �
0
3

dij¦
0
1 $

"−0#i−j−0
"i−j#p

−
"−0#i¦j−0

"i¦j#p %"0−dij#

where dij is the Dirac delta function[
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